325 research outputs found

    Enhancing apprentice-based learning of Java

    Get PDF
    Various methods have been proposed in the past to improve student learning by introducing new styles of working with assignments. These include problem-based learning, use of case studies and apprenticeship. In most courses, however, these proposals have not resulted in a widespread significant change of teaching methods. Most institutions still use a traditional lecture/lab class approach with a strong separation of tasks between them. In part, this lack of change is a consequence of the lack of easily available and appropriate tools to support the introduction of new approaches into mainstream courses.In this paper, we consider and extend these ideas and propose an approach to teaching introductory programming in Java that integrates assignments and lectures, using elements of all three approaches mentioned above. In addition, we show how the BlueJ interactive programming environment [7] (a Java development environment aimed at education) can be used to provide the type of support that has hitherto hindered the widespread take-up of these approaches. We arrive at a teaching method that is motivating, effective and relatively easy to put into practice. Our discussion includes a concrete example of such an assignment, followed by a description of guidelines for the design of this style of teaching unit

    Strain engineering in Ge/GeSn core/shell nanowires

    Get PDF
    Strain engineering in Sn-rich group IV semiconductors is a key enabling factor to exploit the direct band gap at mid-infrared wavelengths. Here, we investigate the effect of strain on the growth of GeSn alloys in a Ge/GeSn core/shell nanowire geometry. Incorporation of Sn content in the 10-20 at.% range is achieved with Ge core diameters ranging from 50nm to 100nm. While the smaller cores lead to the formation of a regular and homogeneous GeSn shell, larger cores lead to the formation of multi-faceted sidewalls and broadened segregation domains, inducing the nucleation of defects. This behavior is rationalized in terms of the different residual strain, as obtained by realistic finite element method simulations. The extended analysis of the strain relaxation as a function of core and shell sizes, in comparison with the conventional planar geometry, provides a deeper understanding of the role of strain in the epitaxy of metastable GeSn semiconductors

    Optically thin clouds in the trades

    Get PDF
    We develop a new method to describe the total cloud cover including optically thin clouds in trade wind cumulus cloud fields. Climate models and large eddy simulations commonly underestimate the cloud cover, while estimates from observations largely disagree on the cloud cover in the trades. Currently, trade wind clouds significantly contribute to the uncertainty in climate sensitivity estimates derived from model perturbation studies. To simulate clouds well, especially how they change in a future climate, we have to know how cloudy it is.In this study we develop a method to quantify the cloud cover from a cloud-free perspective. Using well-known radiative transfer relations we retrieve the cloud-free contribution in high-resolution satellite observations of trade cumulus cloud fields during EUREC4A. Knowing the cloud-free part, we can investigate the remaining cloud-related contributions consisting of areas detected by common cloud-masking algorithms and undetected areas related to optically thin clouds. We find that the cloud-mask cloud cover underestimates the total cloud cover by 33 %. Aircraft lidar measurements support our findings by showing a high abundance of optically thin clouds during EUREC4A. Mixing the undetected optically thin clouds into the cloud-free signal can cause an underestimation of the cloud radiative effect of up to −7.5 %. We further discuss possible artificial correlations in aerosol–cloud cover interaction studies that might arise from undetected optically thin low clouds. Our analysis suggests that the known underestimation of trade wind cloud cover and simultaneous overestimation of cloud brightness in models are even higher than assumed so far

    Phosphate limitation triggers the dissolution of precipitated iron by the marine bacterium Pseudovibrio sp. FO-BEG1

    Get PDF
    Phosphorus is an essential nutrient for all living organisms. In bacteria, the preferential phosphorus source is phosphate, which is often a limiting macronutrient in many areas of the ocean. The geochemical cycle of phosphorus is strongly interconnected with the cycles of other elements and especially iron, because phosphate tends to adsorb onto iron minerals, such as iron oxide formed in oxic marine environments. Although the response to either iron or phosphate limitation has been investigated in several bacterial species, the metabolic interplay between these two nutrients has rarely been considered. In this study we evaluated the impact of phosphate limitation on the iron metabolism of the marine bacterium Pseudovibrio sp. FO-BEG1. We observed that phosphate limitation led to an initial decrease of soluble iron in the culture up to three times higher than under phosphate surplus conditions. Similarly, a decrease in soluble cobalt was more pronounced under phosphate limitation. These data point toward physiological changes induced by phosphate limitation that affect either the cellular surface and therefore the metal adsorption onto it or the cellular metal uptake. We discovered that under phosphate limitation strain FO-BEG1, as well as selected strains of the Roseobacter clade, secreted iron-chelating molecules. This leads to the hypothesis that these bacteria might release such molecules to dissolve iron minerals, such as iron-oxyhydroxide, in order to access the adsorbed phosphate. As the adsorption of phosphate onto iron minerals can significantly decrease phosphate concentrations in the environment, the observed release of iron-chelators might represent an as yet unrecognized link between the biogeochemical cycle of phosphorus and iron, and it suggests another biological function of iron-chelating molecules in addition to metal-scavenging

    Modification of various metals by volume discharge in air atmosphere

    Get PDF
    The results of the modification of stainless steel, niobium and titanium by volume discharge induced by a beam of runaway electrons in air under normal pressure are presented. Changes in the chemical composition of the surface layers of metal by the action of the discharge, structural changes and changes of hardness were studied. It has been found that the concentration of oxygen and carbon in the surface layers of the samples depend on the number of discharge pulses. The aim of this work is to find possible application of this type of discharge in science and industrial production

    Heuristic Evaluation for Novice Programming Systems

    Get PDF
    The past few years has seen a proliferation of novice programming tools. The availability of a large number of systems has made it difficult for many users to choose among them. Even for education researchers, comparing the relative quality of these tools, or judging their respective suitability for a given context, is hard in many instances. For designers of such systems, assessing the respective quality of competing design decisions can be equally difficult. Heuristic evaluation provides a practical method of assessing the quality of alternatives in these situations and of identifying potential problems with existing systems for a given target group or context. Existing sets of heuristics, however, are not specific to the domain of novice programming and thus do not evaluate all aspects of interest to us in this specialised application domain. In this article, we propose a set of heuristics to be used in heuristic evaluations of novice programming systems. These heuristics have the potential to allow a useful assessment of the quality of a given system with lower cost than full formal user studies and greater precision than the use of existing sets of heuristics. The heuristics are described and discussed in detail. We present an evaluation of the effectiveness of the heuristics that suggests that the new set of heuristics provides additional useful information to designers not obtained with existing heuristics sets

    Circular RNAs in urine of kidney transplant patients with acute T Cell-mediated allograft rejection

    Full text link
    BACKGROUND: Circular RNAs (circRNAs) have recently been described as novel noncoding regulators of gene expression. They are detectable in the blood of patients with acute kidney injury. We tested whether circRNAs were present in urine and could serve as new predictors of outcome in renal transplant patients with acute rejection. METHODS: A global circRNA expression analysis using RNA from urine of patients with acute T cell-mediated renal allograft rejection and control transplant patients was performed. Dysregulated circRNAs were confirmed in a cohort of 62 patients with acute rejection, 10 patients after successful antirejection therapy, 18 control transplant patients without rejection, and 13 stable transplant patients with urinary tract infection. RESULTS: A global screen revealed several circRNAs to be altered in urine of patients with acute rejection. Concentrations of 2 circRNAs including hsa_circ_0001334 and hsa_circ_0071475 were significantly increased. These were validated in the whole cohort of patients. hsa_circ_0001334 was upregulated in patients with acute rejection compared with controls. Concentrations of hsa_circ_0001334 normalized in patients with acute rejection following successful antirejection therapy. hsa_circ_0001334 was associated with higher decline in glomerular filtration rate 1 year after transplantation. CONCLUSIONS: CircRNA concentrations are significantly dysregulated in patients with acute rejection at subclinical time points. Urinary hsa_circ_0001334 is a novel biomarker of acute kidney rejection, identifying patients with acute rejection and predicting loss of kidney function

    Hard superconducting gap and diffusion-induced superconductors in Ge-Si nanowires

    Full text link
    We show a hard induced superconducting gap in a Ge-Si nanowire Josephson transistor up to in-plane magnetic fields of 250250 mT, an important step towards creating and detecting Majorana zero modes in this system. A hard induced gap requires a highly homogeneous tunneling heterointerface between the superconducting contacts and the semiconducting nanowire. This is realized by annealing devices at 180180 ^\circC during which aluminium inter-diffuses and replaces the germanium in a section of the nanowire. Next to Al, we find a superconductor with lower critical temperature (TC=0.9T_\mathrm{C}=0.9 K) and a higher critical field (BC=0.91.2B_\mathrm{C}=0.9-1.2 T). We can therefore selectively switch either superconductor to the normal state by tuning the temperature and the magnetic field and observe that the additional superconductor induces a proximity supercurrent in the semiconducting part of the nanowire even when the Al is in the normal state. In another device where the diffusion of Al rendered the nanowire completely metallic, a superconductor with a much higher critical temperature (TC=2.9T_\mathrm{C}=2.9 K) and critical field (BC=3.4B_\mathrm{C}=3.4 T) is found. The small size of diffusion-induced superconductors inside nanowires may be of special interest for applications requiring high magnetic fields in arbitrary direction

    Cloud geometry from oxygen-A-band observations through an aircraft side window

    Get PDF
    During the ACRIDICON-CHUVA (Aerosol, Cloud, Precipitation, and Radiation Interactions and Dynamics of Convective Cloud Systems–Cloud Processes of the Main Precipitation Systems in Brazil: A Contribution to Cloud Resolving Modeling and to the GPM (Global Precipitation Measurement)) aircraft campaign in September 2014 over the Amazon, among other topics, aerosol effects on the development of cloud microphysical profiles during the burning season were studied. Hyperspectral remote sensing with the imaging spectrometer specMACS provided cloud microphysical information for sun-illuminated cloud sides. In order to derive profiles of phase or effective radius from cloud side observations, vertical location information is indispensable. For this purpose, spectral measurements of cloud-side-reflected radiation in the oxygen A absorption band collected by specMACS were used to determine absorption path length between cloud sides and the instrument aboard the aircraft. From these data, horizontal distance and eventually vertical height were derived. It is shown that, depending on aircraft altitude and sensor viewing direction, an unambiguous relationship of absorption and distance exists and can be used to retrieve cloud geometrical parameters. A comparison to distance and height information from stereo image analysis (using data of an independent camera) demonstrates the efficiency of the approach. Uncertainty estimates due to method, instrument and environmental factors are provided. The main sources of uncertainty are unknown in cloud absorption path contributions due to complex 3-D geometry or unknown microphysical properties, variable surface albedo and aerosol distribution. A systematic difference of 3.8&thinsp;km between the stereo and spectral method is found which can be attributed to 3-D geometry effects not considered in the method's simplified cloud model. If this offset is considered, typical differences found are 1.6&thinsp;km for distance and 230&thinsp;m for vertical position at a typical distance around 20&thinsp;km between sensor and convective cloud elements of typically 1–10&thinsp;km horizontal and vertical extent.</p

    High Carbon Mineralization Rates in Subseafloor Hadal Sediments — Result of Frequent Mass Wasting

    Get PDF
    In the past 20 years, the exploration of deep ocean trenches has led to spectacular new insights. Even in the deepest canyons, an unusual variety of life and unexpectedly high benthic oxygen consumption rates have been detected while microbial processes below the surface of the hadal seafloor remains largely unknown. The information that exist comes from geophysical measurements, especially related to seismic research, and specific component analyses to estimate the carbon export. In contrast, no information is available on metabolic activities in deeper buried sediments of hadal environment. Here we present the first pore water profiles from 15 up to 11 m long sediment cores recovered during three expeditions to two hadal zones, the Japan Trench and the Atacama Trench. Despite low levels of organic debris, our data reveal that rates of microbial carbon turnover along the trench axes can be similar to those encountered in much shallower and more productive oceanic regions. The extreme sedimentation dynamics, characterized by frequent mass wasting of slope sediments into the trenches, result in effective burial of reactive, microbially available, organic material. Our results document the fueling of the deep hadal biosphere with bioavailable material and thus provide important understanding on the function of deep-sea trenches and the hadal carbon cycle. Key Points Hadal subseafloor pore water profiles from the Japan Trench and Atacama Trench document unexpectedly high microbial turnover rates Frequent alternations between hemipelagic sedimentation and mass wasting lead to high burial efficiency of reactive organic carbon Microbial activities in deep-sea trenches may be similar to those at the edge of high-production area
    corecore